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1.0 SUMMARY 

This report covers progress made in real-time monitoring and adaptive aiding to increase 
operator performance. Progress from 2008 to 2010 has been previously reported in our 
published work (Christensen et al 2010; Christensen, Estepp, Wilson & Russell 2012). This 
report covers progress made from 2010 to the present. The present work expands upon the 
theory of adaptive aiding by measuring the effectiveness of co-adaptive aiding, wherein we 
explicitly allow for both system and user to adapt to each other.  Adaptive aiding driven by 
psychophysiological monitoring has been demonstrated to be a highly effective means of 
controlling task allocation and system functioning. Psychophysiological monitoring is 
uniquely well-suited for co-adaptation, as malleable brain activity may be used as a 
continuous input to the adaptive system. To establish the efficacy of the co-adaptive system, 
physiological activation of adaptation was directly compared with manual activation or no 
activation of the same automation and cuing systems. We used interface adaptations and 
automation that are plausible for real-world operations, presented in a multi-Remotely 
Piloted Aircraft (RPA) control simulation. Participants completed three days of testing over 
one week. Performance was assessed via proportion of targets successfully engaged.  In 
the first two days of testing, there were no significant differences in performance between 
the conditions.  In the third session, physiological adaptation produced the highest 
performance. By extending the data collection over multiple days, we offered enough time 
and repeated experience for user adaptation and online system adaptation, hence 
demonstrating co-adaptive aiding. 
 

2.0 INTRODUCTION 

Adaptive aiding and adaptive automation have been studied and discussed for quite some 
time. The idea of reallocating tasks between human and machine (Rouse, 1976) to produce 
maximum overall system performance has an intuitive appeal that has led to great interest 
over the years. There are many possible methods of determining task allocation in an 
adaptive system, but one that has shown particular promise is based on 
psychophysiological monitoring (Byrne & Parasuraman, 1996; Parasuraman & Wilson, 
2008; Pope, Bogart, & Bartolome, 1995; Scerbo, 2007) and real-time modification (Wilson & 
Russell, 2003; Wilson & Russell, 2007). The present study was intended to build upon this 
work in two key areas: increasing the realism of the adaptive aiding used and extending 
data collection over multiple sessions and days.  This extension over days allows time for 
the operator to adapt to the system as well as adapting the system to the moment-by-
moment capabilities of the operator, demonstrating co-adaptation. In order to strongly test 
for improvements with physiologically triggered aiding, physiologically triggered adaptive 
aiding was compared to manually triggered adaptable aiding, based on the work of Bailey, 
Scerbo, Freeman, Mikulka, and Scott (2006).  
 
Wilson and Russell (2007) presented a particularly effective demonstration of the potential 
of real-time, physiologically activated adaptive aiding. They used a complex simulation of 
operating multiple Remotely Piloted Aircraft (RPA) in a ground attack mission while 
monitoring electroencephalographic (EEG), electrocardiographic (ECG) and 
electrooculographic (EOG) data (hereafter referred to collectively as physiological data). 
The physiological data were classified in real time by trained artificial neural networks. The 
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neural networks continuously classified operator workload and initiated aiding when high 
workload was detected. The aiding consisted of reducing the airspeed of those vehicles that 
were approaching a target by 50%. They demonstrated that this aiding resulted in 
significantly improved operator performance when activation was based on the physiological 
workload rather than random activation. This provided a strong demonstration of the 
potential positive impact of real-time activation of aiding based on physiologically assessed 
workload.  
 
Reducing the airspeed by half and consequently reducing the rate at which events had to be 
processed is clearly a highly effective means of mitigating task demands on the operator. 
However, in many application settings this type of task slowing may not be a realistic option. 
Extensively developing effective and realistic demand reduction techniques was not, in fact, 
one of Wilson and Russell’s (2007) objectives, as the primary goal was to demonstrate the 
potential of such adaptive aiding systems. To further advance this area of work, it is 
necessary to demonstrate the effectiveness of more realistic aiding techniques appropriate 
to multi-RPA operation. To address this, the present study used an adaptive system that 
implemented a suite of mitigation procedures corresponding to stages two and three in the 
hierarchy proposed by Fuchs, Berka, Levendowski, and Juhnke (2006): directing attention 
via cuing and enhancing the salience of critical events via decluttering. In addition, limited 
automation was invoked that paired vehicles and targets, subject to operator override. This 
builds on a similar study performed by Parasuraman, Cosenzo, and De Visser (2009) by 
testing attentional aiding in addition to automation.  
 
One of the key potential benefits offered by physiological activation is that the system 
should have little or no workload associated with managing activation (Byrne & 
Parasuraman, 1996), unlike manually activated aiding. However, no physiologically based 
workload monitoring system has yet achieved perfect detection of high workload due, at 
least in part, to noise or artifacts (Smith, Gevins, Brown, Karnik, & Du, 2001). Consequently, 
such systems exhibit errors and activate aiding when it is unnecessary or possibly 
detrimental to performance. While the operator could make similar errors in manually 
activating the aiding system, a critical question is whether overall performance achievable 
with an imperfect physiological activation system exceeds that possible with manual 
activation. Undoubtedly, the answer depends on the accuracy of physiologically-driven 
activations as well as the workload involved in manual management of activation. Bailey, 
Scerbo, Freeman, Mikulka, and Scott (2006) demonstrated modest performance 
improvements for physiologically activated automation as compared to manually activated; 
this study builds upon that work by allowing significantly greater time for participants to 
adapt to the physiological activation system. 
 
There is a close relation between physiologically activated adaptive aiding and brain-
computer interfaces (BCI). BCI here refers to the use of brain signals to directly control 
systems, such as the classic example of communicating via selection of letters based on 
analysis or classification of EEG signals (Farwell & Donchin, 1988). Physiologically 
activated adaptive aiding is, in a sense, a special case of BCI wherein the purpose is not 
direct control but rather monitoring and providing aiding to the operator to enable them to 
work more effectively (often referred to as passive BCI, e.g. Zander, Kothe, Jatzev, & 
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Gaertner, 2010). Researchers investigating BCI have noted that brain signals used for BCI 
applications generally evolve with feedback in a manner that improves system performance. 
Recognizing that brain signals are adapting in BCI paradigms suggests that similar ongoing 
adaptation of analysis techniques or classifiers (e.g., Wolpaw, McFarland, Neat, & Forneris, 
1991) is a promising approach. However, BCI work demonstrating the value of recognizing 
that both the operator and physiologic classification systems are adaptive controllers has 
only been accomplished recently (Huang, Erdogmus, Pavel, Mathan, & Hild II, 2011; 
McFarland, Sarnacki, & Wolpaw, 2011). In this line of work, operators that were trained to 
use a BCI system over a period of days achieved greater accuracy with practice. Analysis 
revealed that operators adapted their own EEG signals to more precisely trigger the system. 
This mutually adaptive relationship in BCI (as proposed by Wolpaw, Birbaumer, McFarland, 
Pfurtscheller, & Vaughan, 2002) may then be extended to application in a physiologically 
activated adaptive interface. In an adaptive interface, easily visible interface changes 
provide the necessary feedback to operators who may then adapt brain activity to improve 
their management of the interface. Conversely, the physiological activation system may be 
adapted to the operator by retraining classifiers to capitalize on changes in user brain 
activity. This study retrained classifiers for each participant and day in order to adapt to such 
changes. We term this application and overall process co-adaptation, hence the present 
study tested an implementation of a co-adaptive interface. 
 
The extension of data collection to multiple days was motivated by previous results in which 
BCI-adapted EEG was shown to induce neuroplasticity (Ros, Munneke, Ruge, Gruzelier, & 
Rothwell, 2010), and separate work which has demonstrated that neural activity during 
sleep is a key factor in plasticity and the consolidation of learned items (Steriade, 2001). 
The first and second days of collection in the current study cover a normal sleep-wake 
cycle, and were chosen as most likely to support adaptive changes in the operator’s neural 
signals. The third day of data collection was spaced to one week after the first; this was 
based on learning research that has demonstrated that expanding the inter-study interval 
can lead to more stable retention (Hser & Wickens, 1989), as well as best accommodating 
participant availability. 
 
The present study therefore sought to compare performance in a realistic task with a 
physiologically-activated adaptive aiding system to the same system when triggered by 
simple manual keypress. The study sessions were conducted over three days in order to 
facilitate neuroplastic changes associated with normal sleep-wake cycles and expanding 
inter-study intervals. By thus supporting user adaptation to an already-adaptive system, the 
study ultimately facilitated co-adaptation. 
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3.0 METHODS 

Ten1 naïve persons either currently employed at Wright-Patterson Air Force Base or 
students at Wright State University in Dayton, Ohio, volunteered to participate in the study.  
Employees of Wright Patterson Air Force Base received their normal duty pay, and Wright 
State students were paid $15 per hour for their participation. Participants completed 
comprehensive written informed consent prior to the start of the experiment. All reported 
normal or corrected-to normal vision with no color blindness. Two participants were female 
and eight male, all between the ages of 19 and 26 years (mean of 22 years). All study 
procedures were reviewed and approved by the Air Force Research Laboratory Institutional 
Review Board.  

The multi-RPA operation task was a PC-based supervisory control simulation of a 
“suppression of enemy air defense” mission (Schmidt, Wilson, Funke, Davis, & Caldwell, 
2010) using keyboard and mouse controls. Participants monitored the progress of eight or 
16 generic RPAs on two abutted 51 cm (diagonal) computer screens as they flew a 
preplanned mission. When the RPAs came within radar range of a target, simulated radar 
images of the target area were automatically acquired and operators could then mouse-click 
a map icon to download and view these images. Each image contained zero to eight targets 
drawn from three visually distinct types, as well as 25 to 30 nontarget distractors. Each 
target type was to be engaged with a specific weapon type, generically termed small, 
medium, and large. Each RPA carried a limited number of two of the three weapon types. 
After visually searching the images, participants were required to select each weapon with 
the mouse and click the image to mark appropriate weapon-target pairings before the RPA 
reached the minimum weapons release distance. These tasks were performed for each of 
the RPAs as targets came in range. If the targets were not selected and/or the weapons 
release command (mouse click on a confirmation box) was not given in time, the weapons 
from that RPA could not be released thereby reducing the number of targets successfully 
engaged. Misidentifying a target and assigning an inappropriate weapon type was not 
counted as success. Participants could use the mouse to designate waypoints and direct 
RPAs away from pre-planned routes but were not allowed to double back to reengage 
targets. Successfully engaging all targets required rerouting RPAs as stores were 
expended. This task was intended to broadly represent future operator control tasks and tap 
a wide range of cognitive skills such as working memory, visual search, object recognition, 
task switching, and flexibly managing conflicting priorities. 
 
Adaptive aiding and automation were implemented in this task via several methods. The 
aiding methods were intended to cue attention to time-critical tasks. Because the aircraft 
could not double back, a simple time to contact calculation enabled prioritization of those 
targets that most urgently needed operator attention. The top three target-RPA pairs were 
then color coded with red, yellow, and green transparent circles. All other RPAs and targets 
had contrast lowered (“fog layer”) to render them less salient (Fig. 1). In addition to these 

                                                           
1 Six additional participants (five male and one female) were enrolled in the study. The total 
duration of the study including training and testing typically extended over several months. 
This resulted in these participants leaving prior to completion, most commonly due to 
moving or graduation. 
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aiding techniques, the interface supported partial task automation. Instead of the operator 
manually assigning a RPA to a target, the automation linked each target to the closest RPA. 
This linking was made without regard to the weapon type required or stores on that RPA, 
and thus could link RPAs that were incapable of engaging a target. The operator could see 
the stores on each RPA and override incorrect links. Lastly, when a target came into range 
the automation displayed the appropriate simulated radar image rather than requiring the 
operator to request it. All of the aiding techniques and automation were activated and 
deactivated together, either on operator command or based on physiological workload 
classification. Operator command (the manual activation condition) consisted of pressing 
the spacebar on the keyboard. Physiological activation was triggered based on the output of 
a physiological workload classifier that replicated Wilson and Russell (2007). 
   

 
Figure 1.  An example of the multi-RPA control task. The wedge shaped symbols at the bottom 

represent RPAs that the operator is controlling; the missile-shaped symbols represent air defense 
sites that need to be engaged. Aircraft proceeded from south to north at a fixed rate, requiring 

approximately 20 minutes to traverse the target area. The color cuing is active in this example, and is 
visible as same-color circles around a target/RPA pair. 

 
One concern with the workload classification based aiding is that effective aiding should 
reduce workload, leading to deactivation of the aiding. This could then lead to a high 
frequency of activation/deactivation as workload is modulated by the aiding. In order to 
reduce this, any change in aiding (either manually activated or physiologically activated) 
triggered a timeout of 15 seconds before allowing another such change. Aiding remained on 
if reactivation was commanded during this 15 second window.  
 
Physiological data recording and analysis replicated Wilson and Russell (2007). Briefly, this 
included EEG from five channels, at F7, Fz, Pz, T5, and O2, positioned according to the 
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International 10-20 electrode system (Jasper, 1958), using an Electro-Cap (Electro-Cap 
International, Inc., Eaton, OH). Reference and ground electrodes were positioned on the 
mastoid processes, with impedances verified below 5 kiloohms. Horizontal and vertical 
electrooculogram (HEOG and VEOG, respectively) and electrocardiogram (ECG) were also 
recorded using standard Ag/AgCl electrodes.  A Cleveland Medical Devices, Inc. (now Great 
Lakes NeuroTechnologies, Cleveland, OH) BioRadio 110 telemetry unit was used to acquire 
these data channels with a sampling rate of 200 Hz (12 bit resolution, bandpass filtered 
between 0.5 and 52.4 Hz). Corrections for eye movement and blinks were made using an 
on-line implementation of an adaptive filter with HEOG and VEOG used as reference noise 
channels (He, Wilson & Russell, 2004; He, Wilson, Russell & Gerschutz, 2007). Inter-beat 
interval (IBI), calculated over a ten second window, and was derived from the ECG channel 
using an on-line algorithm (Pan & Tompkins, 1985; Hamilton & Tompkins, 1986).  Similarly, 
blink rate, calculated over a thirty second window, was derived using an on-line algorithm 
developed by Kong & Wilson (1998).  The EEG data were filtered into separate band-limited 
channels using elliptical IIR filter banks.   The passbands for each channel were consistent 
with the five traditional bands of EEG: delta (0.5-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta 
(13-30 Hz) and gamma (31-42 Hz).  For real-time classification, the data were segmented 
into ten-second windows with a nine-second overlap.  Log power of the five bands from the 
five sites was used in addition to IBI and blink rate, resulting in 37 features as inputs for 
workload classification.  Workload classification was accomplished via a feedforward 
artificial neural network (ANN) trained via backpropagation with two output nodes 
corresponding to low and high workload, replicating the procedure used by Wilson and 
Russell (2003). Immediately following each trial, participants completed the computerized 
NASA-TLX (Hart & Staveland, 1988). 
 
Participants were extensively trained on the task prior to the experimental sessions in order 
to reduce training effects during the three data collection days. Each participant completed a 
minimum of two hours of training per day for five days. Over the course of these days of 
training, participants were gradually introduced to all of the task features. The aiding system 
was introduced on approximately the fourth day of training; the fourth and fifth days included 
practice manually controlling the aiding system. Participants were instructed to maximize 
their performance by using aiding as much or as little as they liked when it was available. 
Training was continued until a performance criterion (80% of targets engaged without any 
aiding while controlling 16 RPAs) was met. 
 
Testing days for each participant followed a fixed schedule: Day Two was always right after 
Day One, with Day Three one week after Day One (six days after Day Two). This schedule 
was chosen in order to maximize the potential for operator adaptation in using the adaptive 
aiding system, space the learning sessions over an expanding interval, and maximize 
participant availability. On each testing day, after fitting all electrodes the participants 
completed one 5 minute task run to warm up. A subsequent resting baseline included two 
minutes of eyes open and two minutes of eyes closed. Setting up the physiologically 
activated aiding then required two classifier training trials, one 10 minute trial each of low 
difficulty (8 RPAs) and one high (16 RPAs), with no aiding. Twenty minutes of data was 
sufficient to train the classifier, however significantly less data (10 minutes total) has proven 
sufficient in other similar studies (Christensen, Estepp, Wilson, & Russell, 2012). These 
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classifier training trials were repeated on each new day of testing in order to adapt the 
classifier to changes that may have taken place in operator brain signals. In order to avoid 
order or carryover effects, we randomized the order of trials for each participant and day. 
However, the classifier training trials had to precede any run using physiologically activated 
aiding. With this constraint and three experimental trials (one each of no aiding, 
physiologically activated aiding and manual activated aiding) there are 72 possible 
randomizations. Thirty were selected that resulted in each participant completing the three 
aiding conditions in a unique order each day, with the physiologically activated condition 
appearing once in each possible position. The experimental trials were 20 minutes in 
duration, one each with no aiding, manually activated aiding, and physiologically activated 
aiding. Each experimental trial included a low difficulty middle segment of approximately 5 
minutes during which only 8 of the 16 RPAs had targets to engage; the remainder of the trial 
was high difficulty with all 16 RPAs engaging targets. A total of 120 targets were presented 
in these high difficulty segments. The embedded low-difficulty segment enabled verification 
that the physiologically activated aiding did not simply remain on for the entirety of a run. 
Participants completed the NASA-TLX immediately following each trial. In total, the testing 
session took approximately five hours each day. Performance data will be reported for the 
high-difficulty (16 RPAs controlled) portions only as low-difficulty portions are at ceiling. 
 

4.0 RESULTS 

Performance was calculated as the average proportion of targets successfully engaged in 
the high-difficulty segments of a trial (out of 120 high-difficulty targets total per trial). For 
statistical analysis, these proportions were corrected via the arcsine transform (Freeman & 
Tukey, 1950); all data reported in figures are raw proportions to aid in interpretation. A 3 
(days) x 3 (no aiding, physiologically activated, manually activated) repeated-measures 
ANOVA was conducted using the Huynh-Feldt correction for any violations of sphericity. 
The main effects of aiding activation type and day of testing were not significant, p>.1. 
However, there was a significant interaction between the two factors, F(3.06, 27.6)=5.37, 
p=.005, partial η2=.374 (Fig. 2).  It is evident from Figure 2 that the aiding groups did not 
differ on the first two days, but physiological activation improved on the third day. This 
interaction was probed with individual ANOVAs that compared the three aiding conditions 
separately for each day; for the first two days, these tests were not significant, p>.1. On the 
third day, this test was significant, F(2,18)=5.83, p<.01, partial η2=.421. Post hoc 
comparisons using the Tukey HSD test indicated that the mean for the physiological 
activation condition (M = .90, SD = .05) was significantly greater than the means for the 
manual activation (M = .84, SD = .06) and no aiding conditions (M = .82, SD = .07). The 
latter two conditions were not significantly different from each other. The magnitude of the 
difference between physiological activation and manual activation on the third day was 
modest at 6%; however, the effect size (Cohen’s d) for this comparison was large at 1.17.  
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Figure 2. Performance results expressed as the mean proportion of total targets successfully engaged 
in the high-workload portions of a trial. “Operator” refers to operator control of aiding activation, while 

“Physio” refers to physiological activation of aiding. Error bars are standard errors. 
 
The NASA-TLX subjective workload data were analyzed similarly to the performance data 
reported above. The overall scores were calculated via the unweighted procedure (Nygren, 
1991). The task was indeed challenging; the mean overall score for high difficulty conditions 
was 61 as opposed to 24 for the low difficulty conditions. There was a great deal of 
apparently random variance in scores within participants across days, even at constant 
performance; to ameliorate this, scores were normalized via z-scoring within participant and 
day as recommended by Stevens (1971). Means and standard deviations for z-scoring were 
drawn from all eight composite scores (within participant and day): two from the calibration 
conditions, and two from each of the three aiding conditions (one for the low difficulty 
segment and one for the high difficulty). A possible consequence of this normalization is a 
reduction in between-day differences if those differences are scalar; as we did not observe 
a main effect of days on performance this was judged acceptable. Even after normalizing, 
one participant produced outlier TLX scores that were approximately four standard 
deviations from the mean; this participant was excluded from all subsequent analyses of 
these data. A 3 x 3 (three aiding conditions and three days) repeated-measures ANOVA 
revealed a significant main effect of day, F(1.8,14.5)=13.01, p=.001, partial η2=.619 and a 
significant interaction, F(2.8,22.3)=3.09, p=.035, partial η2=.296 (Fig. 3). As with the 
performance data, individual ANOVAs compared the aiding conditions separately for each 
of the three days. These revealed no significant differences on Day 1 or Day 2, but a 
significant main effect on Day 3, F(2,16)=12.08, p=.001, partial η2=.602. Post hoc 
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comparisons using the Tukey HSD test indicated that all three aiding conditions are 
significantly different from each other, with no aiding producing significantly higher workload 
(M = 1.2, SD = .2) than the operator activated condition (M = .94, SD = .2), which in turn 
was higher than the physiological activation condition (M = .69, SD = .2). 
 

 
 

Figure 3. NASA-TLX overall workload scores expressed as the normalized mean score across 
participants. “Operator” again refers to operator control of aiding activation, while “Physio” refers to 

physiological activation of aiding. Error bars are standard errors. 
 

As the activation of the aiding was not controlled across conditions, it was necessary to test 
if the difference in performance may be simply explained by a difference in the proportion of 
time the aiding was active. A 2 x 3 (aiding activation type by days) repeated-measures 
ANOVA was run on the proportion of the high workload segments of a trial during which the 
aiding was active. This ANOVA did not result in any significant effects; the closest to 
significance was the aiding-by-day interaction, F(1,9) = 2.50, p>.1. Given the significant 
differences between physiological activation and the other conditions on the third day 
reported above, the difference between operator activation and physiological activation was 
checked on Day Three via a simple paired t-test. This was likewise not significant, t(9)=1.01, 
p>.3 (two tailed). For Day Three, operators activated the aiding for an average of 49% of the 
run, while the physiological activation resulted in aiding for 61% of the high workload 
portions of a trial. This same analysis also indicated that the physiological activation system 
discriminated between the high and low workload segments; it was active for an average of 
23% of the time during the low workload segments. Due to the variable nature of participant 
workload during a run (due to differences in individual strategy, RPA routing, weapon stores 
usage, etc.), it is difficult to assign a “correct” classification percentage for the physiological 
activation system. It is nonetheless intuitive that aiding should be more active in segments 
of increased workload. 
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The 15-second timeout on activation/deactivation of aiding reduced but did not eliminate 
more frequent cycling of aiding in the physiologically activated condition. This was probed 
with a 2 x 3 (aiding activation type by days) repeated-measures ANOVA conducted on the 
number of activations. There was a significant main effect of activation type, F(1,9)=35.09, 
p<.01. Across days, aiding was triggered an average of five times per run in the manually 
activated aiding condition, and 15 times in the physiologically activated condition. There was 
no significant effect of testing day or interaction effect (p>.1). Aiding cycled more frequently 
in the physiologically activated condition but was not on for a significantly greater length of 
time. 
 

5.0 DISCUSSION 

This work set out to test the efficacy of simultaneously adapting an interface to the user via 
physiological monitoring while facilitating the possibility of neuroplastic changes associated 
with a normal sleep-wake cycle and inter-study intervals. The significant interaction between 
type of aiding and days of testing reveals that this approach indeed resulted in improved 
performance, above that achieved with a simple manually controlled adaptable interface, 
which is generally consistent with Bailey, Scerbo, Freeman, Mikulka, and Scott (2006). This 
is perhaps the key criterion for a successful physiological aiding system: despite imperfect 
workload classification it is still superior to manual control.  
 
Performance was not significantly different over the three days in the no aiding and the 
manually activated aiding conditions. This validates that task training did indeed approach 
asymptote; if participants were still learning the task we would have expected a simple main 
effect of days, regardless of aiding condition. Similarly, the training with the manually 
activated aiding was effective; if they were still learning to use the aiding system we would 
expect an interaction between aiding condition and days, with significantly better 
performance in both of the aided conditions relative to the unaided condition. There were no 
significant differences between manually activated aiding and no aiding in performance; this 
is evidence that learning or adaptation is confined to physiologically activated aiding, 
consistent with our hypothesis regarding co-adaptive aiding. 
 
Analysis of the NASA-TLX workload scores revealed that subjective workload mirrors 
performance to some degree; the same interaction between aiding and day was observed, 
although post hoc testing revealed that all three aiding conditions were different from each 
other on Day 3, whereas in the performance analyses operator activation and no aiding 
were not significantly different from each other on Day 3. The pattern of differences in TLX 
on Day 3 matches expectations, with no aiding producing the highest workload, operator 
activation the next highest, and physiological the lowest. This confirms that on Day 3, the 
physiological activation produced both the highest performance and the lowest subjective 
workload. The manually activated aiding is not completely ineffective; subjective workload 
was lower on Day 3 than that observed with no aiding even though there was no significant 
difference in performance. 
 
The present work was not designed to fully elaborate the nature of adaptive changes 
occurring within the operator. However, we may reasonably infer that the process may 
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involve strategic changes in their approach to the task, changes in physiological signals that 
reduce noise (McFarland, Sarnacki, & Wolpaw, 2011), and perhaps the development of 
conscious control of signals to activate aiding due to what may be considered a biofeedback 
paradigm. Strategic changes would have to be uniquely effective with physiologically 
activated aiding to produce the observed pattern of results and were not reported by 
participants in post-study debriefing. On the other hand, greater facility with the 
physiological activation system as a result of adaptive changes in their own physiological 
signals is consistent with the existing literature on neuroplasticity and adaptive BCI. It is also 
not possible to determine to what degree co-adaptation requires conscious effort or 
intention to adapt; there is a large body of literature on implicit learning (Reber, 1989) that 
suggests conscious effort may not be required. As all such adaptive changes on the part of 
the operator presumably have a neural substrate, it may not be possible to separate the 
exact causes or sources of co-adaptation, i.e. a reduction in noise in physiological workload 
classification could be an ancillary effect of neural changes associated with strategic 
change. 
 
While the proportion of time in which aiding was active was equivalent between the 
manually activated and physiologically activated aiding conditions, this was achieved with 
more on/off cycling in the physiologically activated condition. This is consistent with the 
expectation that effective aiding should reduce workload, leading to deactivation of the 
aiding, though simple errors in workload classification may also contribute. These factors 
result in more frequent transitions from both low to high workload and high to low workload; 
the performance effects of these transitions may have cancelled each other out (Matthews, 
1986) or produced a net decline in performance (Krulewitz, Warm, & Wohl, 1975) relative to 
the less frequent transitions in the manually activated aiding condition. It is therefore 
possible that the observed improvement in performance with physiologically activated aiding 
would have been increased with less frequent transitions, perhaps achieved via a longer 
timeout between such changes. The management of workload transitions in an adaptive 
aiding context will require careful attention in future work. 
 
The overall improvement in performance obtained with this realistic combination of 
automation and task cuing was nonetheless relatively modest. At best (Day 3, with 
physiological activation as compared to no aiding) the proportion of targets engaged 
improved from .81 to .90, or 9%. However, this improvement is similar to the 12% 
improvement observed in Bailey et al (2006), and the 15% improvement observed in Prinzel 
et al (2000), both with more artificial tasks. While this may be coincidental, it is possible that 
the decreased workload associated with not having to manually manage an adaptive 
interface in a complex task should result in these levels of modest performance 
improvements. 
 
It is also of note that the manually controlled aiding resulted in performance no better than 
that observed with no aiding at all. By chance, this study may have happened upon a 
combination of aiding effectiveness, workload associated with managing the aiding, and 
task difficulty that resulted in the additional management workload cancelling out any 
benefits from having the aiding. If that is true, then the physiologically activated condition 
reveals the underlying effectiveness of the aiding system as it does not burden the operator 
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with additional workload to manage activation. We may still then conclude that the aiding 
used in this study is of relatively marginal benefit, which points at a fundamental limitation in 
this line of research: many or most system adaptations and automation that improve 
performance overall in a task are interface improvements that should be used at all times. 
The promise of adaptive interfaces is predicated on the assumption that there is some cost 
associated with constant usage, such that performance is less than optimal. For the 
experimenter who wishes to study adaptive aiding in realistic tasks, this creates a 
challenging problem in expert system and interface design: develop aiding or automation 
that is useful under condition of high load, but detrimental under low load. In this study, this 
condition was met by the use of imperfect, simple rule-based automation; a non-overloaded 
operator could outperform the automation and thus should not use it. As has been 
discussed (Fuchs, Berka, Levendowski, & Juhnke, 2006), in tasks such as RPA operations 
a considerable amount of state information must be available for automation to be effective. 
In this study, the state of the environment is known absolutely, and a reasonable 
approximation of ideal user behavior is possible due to the constrained nature of the task. In 
order to find real-world application, adaptive interface techniques must be either constrained 
to a very narrow window of user behavior (i.e. avoiding controlled flight into terrain as in 
automatic ground collision avoidance) or utilize artificial intelligence that is considerably 
more sophisticated than systems widely available now. Based on Wilson and Russell 
(2007), much better performance improvements are achievable with physiological activation 
of highly effective aiding techniques; advancement in this area will be required for 
operationally effective adaptive interfaces. 
 
Outside operational applications, the challenge of implementing effective and appropriate 
aiding may be avoidable. In training or team-based applications (e.g. Elkins et al., 2009; 
Espevik, Helge Johnsen, Eid, & Thayer, 2006; Stevens, Galloway, Berka & Sprang, 2009), it 
may be sufficient to provide additional state information via physiological workload 
monitoring, thus enabling either a human instructor or human teammates to more effectively 
adapt their own behavior, or adapt the team composition more appropriately to the task (e.g. 
Woolley et al., 2007). 
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6.0 CONCLUSIONS 

In summary, the present work demonstrated the effectiveness of realistic co-adaptive aiding 
in a simulated multi-RPA control task. Over time, the users adapted their interaction with 
physiologically activated aiding, while that interface adapted to them, hence co-adaptive 
aiding. 
 
KEY POINTS 

• Performance with physiologically activated adaptive aiding on the third day of testing 
exceeded performance with manually activated aiding or no aiding  

• There was no significant effect of activation type on the first two days 
• Manually controlled aiding is a key comparison for alternative control mechanisms 
• Effective adaptation or mitigation techniques are difficult to design and implement in 

realistic tasks 
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LIST OF ABBREVIATIONS AND ACRONYMS 
 
 
Ag   silver 

AgCl   silver chloride 

ANN   artificial neural network 

ANOVA  analysis of variance 

BCI   brain computer interface 

ECG   electrocardiography 

EEG   electroencephalography 

EOG   electrooculography 

HEOG   horizontal (eye movement) electrooculography 

HSD   Honestly Significant Difference 

Hz   Hertz 

IBI   inter-beat interval   

IIR   infinite impulse response 

NASA-TLX  National Aeronautics and Space Administration Task Load Index 

OFS   operator functional state 

PC   personal computer 

“Physio”   physiological activation of aiding 

RPA   remotely piloted aircraft 

TLX   Task Load Index 

VEOG   vertical (eye movement) electrooculography  
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